Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development.

نویسندگان

  • S D Robinson
  • G B Silberstein
  • A B Roberts
  • K C Flanders
  • C W Daniel
چکیده

Transforming Growth Factor-beta 1 (TGF-beta 1) was previously shown to inhibit reversibly the growth of mouse mammary ducts when administered in vivo by miniature slow-release plastic implants. We now report a comparative analysis of three TGF-beta isoforms with respect to gene expression and localization of protein products within the mouse mammary gland. Our studies revealed overlapping expression patterns of TGF-beta 1, TGF-beta 2 and TGF-beta 3 within the epithelium of the actively-growing mammary end buds during branching morphogenesis, as well as within the epithelium of growth-quiescent ducts. However, TGF-beta 3 was the only isoform detected in myoepithelial progenitor cells (cap cells) of the growing end buds and myoepithelial cells of the mature ducts. During pregnancy, TGF-beta 2 and TGF-beta 3 transcripts increased to high levels, in contrast to TGF-beta 1 transcripts which were moderately abundant; TGF-beta 2 was significantly transcribed only during pregnancy. Molecular hybridization in situ revealed overlapping patterns of expression for the three TGF-beta isoforms during alveolar morphogenesis, but showed that, in contrast to the patterns of TGF-beta 1 and TGF-beta 2 expression, TGF-beta 3 is expressed more heavily in ducts than in alveoli during pregnancy. Developing alveolar tissue and its associated ducts displayed striking TGF-beta 3 immunoreactivity which was greatly reduced during lactation. All three isoforms showed dramatically reduced expression in lactating tissue. The biological effects of active, exogenous TGF-beta 2 and TGF-beta 3 were tested with slow-release plastic implants. These isoforms, like TGF-beta 1, inhibited mammary ductal elongation in situ by causing the disappearance of the proliferating stem cell layer (cap cells) and rapid involution of ductal end buds. None of the isoforms were active in inhibiting alveolar morphogenesis. We conclude that under the limited conditions of these tests, the three mammalian isoforms are functionally equivalent. However, striking differences in patterns of gene expression and in the distribution of immunoreactive peptides suggest that TGF-beta isoforms may have distinct roles in mammary growth regulation, morphogenesis and functional differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

Tumor Formation and Metastasis Development and Polyomavirus Middle T Antigen Induced Gene in Mammary Epithelia on Mammary Gland

Transforming growth factor–B (TGF-B) isoforms are growth factors that function physiologically to regulate development, cellular proliferation, and immune responses. The role of TGF-B signaling in mammary tumorigenesis is complex, as TGF-B has been reported to function as both a tumor suppressor and tumor promoter. To elucidate the role of TGF-B signaling in mammary gland development, tumorigen...

متن کامل

Mouse models of transforming growth factor beta impact in breast development and cancer.

It is now recognized that transforming growth factor beta (TGF-beta) is an important factor that regulates normal breast development as well as breast cancer. Genetically engineered mouse models have been used to determine the role and mechanism of TGF-beta action in normal development and diseases of the breast. Using these models, it has been determined that TGF-beta regulates many steps of n...

متن کامل

Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta.

Transforming growth factor-beta (TGF-beta) regulates proliferation, morphogenesis, and functional differentiation in the mammary gland and plays complex roles in mammary tumorigenesis. Here we show that the signaling mediators Smad1-Smad5 are expressed at all stages of mammary gland development. To begin to investigate which Smads mediate which TGF-beta responses, we have analyzed mammary gland...

متن کامل

Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice.

Transforming growth factor (TGF)-beta1 and TGF-beta3 are normally expressed at high levels in the mammary gland during quiescence and at all stages of development, except lactation. Exogenously added TGF-beta1, -beta2, and -beta3 have been shown to regulate growth and differentiation of mammary epithelial cells in vitro and in vivo. TGF-betas signal through a heteromeric complex of type I and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 113 3  شماره 

صفحات  -

تاریخ انتشار 1991